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Abstract. In this paper, we address to the problem of the origin of in-plane stresses in contin-
uous, high-speed webs. In the case of thin, slender webs a typical modeling approach is the
application of static in-plane stress approximation without considering the effects of in-plane
velocity field. In the case of one-dimensional equations, we will study the effects of material
viscoelasticity and Eulerian non-linearity of the transport velocity. Finite element solutions of
the non-linear equation are presented with both elastic and viscoelastic material assumptions.
Despite the limitations of the Kelvin-Voigt material assumption, fundamental coupling effects
between viscoelasticity and velocity are visible. The strain behavior in the span under study is
examined, and from both analytical and numerical results it is seen that the web strain is not
constant during the span length. Results also indicate that the viscous properties of the material
are closely connected to the overall tension level behavior in the stretched web span. Material
time-dependency changes the web stress behavior: the span length, material viscosity and the
web velocity cause significant effects, which are observed in the in-plane dynamics of the web.
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1 Introduction

In the handling of continuous, high-speed webs the origin of in-plane stresses creates a sci-
entific problem, which is not yet completely understood. Especially, the type of the web ma-
terial has a significant effect on both qualitative and quantitative characteristics of the in-plane
stresses. Web tension in the moving continuous web systems can usually be controlled in the
direction of the transport velocity, the tension being generated by a velocity difference between
the starting and ending lines of the span. With high transport velocities, both web stress and
web stability are under concern not only in this longitudinal direction but also in the direction
perpendicular to the velocity in the plane of the web.

Since axially moving materials, such as strings, belts, beams, membranes and plates, have
many applications in industry, e.g. in paper production, their mechanics have been studied
widely. In processing of different kinds of thin, laterally moving solid webs, such challenges as
efficiency of production and effects caused by high processing speed are met.

Research history of vibrations of travelling elastic materials goes back to the 1950’s, when
Sack [40] and Archibald and Emslie [1] studied transverse vibrations in a traveling string. In the
1960s and 70’s, many researchers continued studies on moving strings and beams concentrating
mainly on various aspects of free and forced transverse vibrations [31, 33, 34, 35, 43, 46].
Stability of small transverse vibrations of travelling two-dimensional rectangular membranes
and plates have been studied by Ulsoy and Mote [51], and Lin [26]. When the web is advancing
through processes without an external support, the inertial forces depending on the web speed
are coupled with web tension. Also the transverse behavior of the web and the response in the
flowing fluid (air) surrounding the web are coupled (see e.g. [7, 38]).

Lin and Mote studied an axially moving membrane in a 2D formulation, predicting the equi-
librium displacement and stress distributions under transverse loading [27]. Later, the same
authors studied the wrinkling of axially moving rectangular webs with a small flexural stiffness
[28]. They predicted the critical value of the non-linear component of the edge loading after
which the web wrinkles and the corresponding wrinkled shape of a web. It is also known, that
lack of web tension will result in loss of stability in the moving web, which from the applica-
tion viewpoint, disturbs required smooth advancing of the web (see e.g. [3, 4]). From the other
hand, web tension too high may cause web breaks, which deteriorate production efficiency and
the strength properties of the processeed material (see e.g. [2, 39, 41, 44]).

Considering wet paper material, the viscoelastic properties play an important role in the
behavior of the web and, thus, are to be included in the model. The first study on transverse
vibration of travelling viscoelastic material was carried out by Fung et. al. using a string model
[15]. Extending their work, they studied the material damping effect in their later research [16].

Viscoelastic strings and beams have been studied recently exceedingly, see e.g. [30, 53].
Oh et al. studied critical speeds, eigenvalues and natural modes of the transverse displacement
of axially moving viscoelastic beams using the spectral element model [25, 36]. Chen and
Zhao [12] represented a modified finite difference method to simplify a non-linear model of an
axially moving string. They studied numerically the free transverse vibrations of both elastic
and viscoelastic strings. Chen and Yang studied free vibrations of viscoelastic beams travelling
between simple supports with torsion strings [11]. They studied the viscoelastic effect by per-
turbing the similar elastic problem and using the method of multiple scales. Very recently, Yang
et al. studied vibrations, bifurcation, and chaos of axially moving viscoelastic plates using finite
differences and a non-linear model for transverse displacements [52].

Marynowski and Kapitaniak studied differences between the Kelvin-Voigt and Bürgers mod-
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els in modeling of internal damping of axially viscoelastic moving beams. They found out that
both models gave accurate results with small damping coefficients, but with a large damping
coefficient, the Bürgers model was more accurate [29]. In 2007, they compared the models with
the Zener model studying the dynamic behavior of an axially moving viscoelastic beam [30].
They found out that the Bürgers and Zener model gave similar results for the critical transport
speed whereas the Kelvin-Voigt model gave a greater transport speed compared to the other two
models.

The origin and structure of the tension distribution in a moving solid web seems to be an
exceptionally unknown area. The often used models with the web materials are based on as-
sumptions of isotropic or orthotropic material properties (see e.g. [5, 48]). Also, the web
materials are often considered as viscoelastic or viscoplastic but there is no coupling between
in-plane strain and web velocity effects (see e.g. [19, 37, 50]). Time-dependent, in-plane vibra-
tions of a moving continuous membrane were studied by Shin et al. [42]. In their work, in-plane
vibration modes of an isotropic web were studied between the traction lines. Also Guan et. al.
have studied viscoelastic web behavior in both steady state and unsteady state cases [17, 18].

Usually, the partial time derivative has been used instead of the material derivative in the
viscoelastic constitutive relations. Mockensturm and Guo suggested that the material deriva-
tive should be used [32]. They studied non-linear vibrations and dynamic response of axially
moving viscoelastic strings. Kurki and Lehtinen suggested, independently, that the material
derivative in the constitutive relations should be used in their study concerning the in-plane dis-
placement field of a travelling viscoelastic plate [23]. In the study by Chen et al., the material
derivative was used in the viscoelastic constitutive relations [8]. They studied parametric vi-
bration of axially accelerating viscoelastic strings. Chen and Ding studied stability of axially
accelerating viscoelastic beams using the method of multiple scales and the material derivative
in the viscoelastic constitutive relations [13]. Chen and Wang studied stability of axially accel-
erating viscoelastic beams using asymptotic perturbation analysis and the material derivative in
the viscoelastic relations [10]. In a recent research by Chen and Ding, the material derivative
was also used to study dynamic response of vibrations of axially moving viscoelastic beams [9].
In their study, a non-linear model was used taking into account the coupling of the transverse
displacement with the longitudinal (in-plane) displacement. However, the transverse behavior
of the beam was their main focus.

In this paper, we will represent a study where the effects of material viscoelasticity and Eule-
rian non-linearity of the transport velocity U in are considered in the following one-dimensional
equation:

ηU
∂3u

∂x3
+ (E − ρU2)

∂2u

∂x2
− ρU ∂U

∂x

∂u

∂x
= 0 (1)

where η is viscosity, ρ is density of material, x is axial coordinate and u is the in-plane displace-
ment. One fundamental observation of this study is the significance of strain-based boundary
conditions; in the case on one-dimensional model, the strain (Dirichlet) boundary condition af-
fects throughout the web thickness isolating the span under observation from other preceding
or succeeding web spans.

2 Continuous web flow phenomenon

Continuous, moving web creates a flow continuum, which may be considered as a solid flow
medium. Due to its solid nature, web continuum is always under the stress state, which is caused
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by the strain state. Using the conservation of mass, we get the following equation:

∂ρ

∂t
+ ρ∇U = 0 . (2)

with web density ρ and longitudinal velocity U .
Assuming the density ρ to be constant, using Eq. (2) we may construct the mass conservation

law for the situation described in Figure 1. Because there is a longitudinal strain component ε
in the web span under observation, Eq. (2) can be represented as follows:

ρA1U1 − ρA2U2 = 0 , (3)

where

A2 =
A1

1− εT

(4)

and εT is the strain at the end of the span, i.e at the area A2 in Figure 1. From Eqs. (3) and (4),
we obtain

εT =
U2

U1

− 1 . (5)

Flowing solid continuum in the case above is assumed to be controlled only in the direction
of the transport speed, i.e. in the longitudinal x-direction. Note that Eq. (3) can be applied only
in the steady-state situation of the flow, i.e. the web is assumed to flow smoothly and without
time-dependent disturbances [18]. Also, the traction lines at the cross-sectional areasA1 andA2

are assumed to affect only at the surfaces of the web, i.e. the stress and strain waves advancing
inside the web thickness can cross the traction lines. Therefore the boundary conditions of
the moving continuous webs in reality are consisting rather complicated friction-based force
transmission phenomena at web-roll contact areas [22].

3 One-dimensional viscoelastic in-plane moving continuum equations

In this article, material assumption of the web continuum is based on viscoelasticity. With
fibrous, composite-type materials, the elasticity properties are result of complicated material
pre-processing, which further results in orthotropic anisotropy with material time-dependency
(see e.g. [6, 20, 37, 50]). One can derive a vast number of different rheological models for
the time-dependent material behavior but fundamental behavior of continuous flow of the solid
viscoelastic web can be analyzed by using the simple Kelvin-Voigt model. The principle of the
Kelvin-Voigt model is described in Figure 2.

Stress-strain behavior of one-dimensional Kelvin-Voigt material is (see e.g. [14])

σ = Eε+ η
dε

dt
, (6)

where σ denotes the stress, ε the strain, E the Young’s modulus, and η the viscosity coefficient.
In the following, we represent a description of the strains and deformations. A standard

method to describe the structural deformations is to use material assumption with static medium
according to the placement of observer. Longitudinal movement of material creates in-plane
deformations, the modelling of which is a real challenge, since the actual deformation is to be
handled using spatial or mixed Lagrange-Euler description[24, 45]. This description is standard
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Figure 1: Solid web continuum flowing between the incoming and outgoing flow control areas A1 and A2 with
longitudinal speeds U1 and U2 between the beginning and ending tractions lines, respectively.
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Figure 2: Kelvin-Voigt rheological model.

in fluid dynamics where the observer is watching a control volume where possible deformations
will appear [21]. Using the same principle, we may construct a constitutive flow model for
solid, anisotropic viscoelastic moving continuum. Therefore the strain ε is to be written in the
Lagrange-Euler form:

ε = ε(x, t) . (7)

The material derivative of strain ε is then
dε

dt
=
∂ε

∂x

dx

dt
+
∂ε

∂t
= U

∂ε

∂x
+
∂ε

∂t
. (8)

For time-dependent solid continuum flow, the following equation may be derived:

ρ
∂2u

∂t2
+ 2ρU

∂2u

∂x∂t
+ ρU2∂

2u

∂x2
+ ρ

(
∂U

∂t
+ U

∂U

∂x

)
∂u

∂x
=

E
∂2u

∂x2
+ η

(
∂3u

∂x2∂t
+ U

∂3u

∂x3

)
. (9)

If we assume that there is no time-dependent fluctuation in x-directional displacement u, we can
represent a steady-state equation for ideal, undisturbed axial narrow web flow in the following
form:

ηU
∂3u

∂x3
+ (E − ρU2)

∂2u

∂x2
− ρU ∂U

∂x

∂u

∂x
= 0 . (10)

With the assumption of linear Cauchy strains states

ε = ∂u/∂x (11)

and based on the linearized form of Eq. (10) ,we will get the equation

ηU
∂2ε

∂x2
+ (E − ρU2)

∂ε

∂x
= 0 . (12)

The similarity between Eq. (12) and the heat convection equation

kT
∂2T

∂x2
− ρcpU

∂T

∂x
= 0 (13)

in one dimension is apparent. In Eq. (13), T is temperature, U the spatial motion of the media
surrounding the object under heat transfer, cp the specific heat of the object, and kT the heat
diffusion coefficient [47].
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4 Algebraic solution of the linearized steady-state case

The solution of Eq. (12) can be achieved using algebraic methods. If only pure elasticity is
present, solution is of the form:

(E − ρU2)ε = C , (14)

where C is constant. Thus, the solution obeys Hookean behavior, i.e. the strain ε is constant
regardless of the level of the transport velocity U .

However, with nonzero viscosity, Eq. (12) becomes

∂2ε

∂x2
+

(
E − ρU2

ηU

)
∂ε

∂x
= 0 . (15)

With the boundary conditions ε(0) = 0, ε(`) = εT, the algebraic solution of Eq. (15) is [22]

ε(x) = εT
1− e−kx

1− e−k`
, (16)

where

k =
E − ρU2

ηU
(17)

and ` is the length of the span under observation.
Analytical solution of the strain can be obtained only for the linearized one-dimensional

case. Based on Eq. (8), we define the spatial strain in the steady-state case:

dε

dt
= U

∂ε

∂x
. (18)

Now the x-directional stress σ appearing in the moving viscoelastic span based on the strain in
Eq. (16) is a superposition of the elastic and viscous stress components:

σ = EεT
1− e−kx

1− e−k`
+ ηUεT

ke−kx

1− e−k`
. (19)

Substitution of (17) into (19), one gets

σ =
εT

1− e−k`
(E − ρU2e−kx) . (20)

5 Numerical results by FEM

Numerical solution of the viscoelastic moving continuum problem is realized using the finite
element method (FEM). The derivation of the FEM matrices is performed using the principle
of virtual work. Virtual work δW can be calculated using the virtual strain δεT as follows [54]:

δW =
∫

V
δεT σ̄ dV . (21)

In the finite element method, the connection between the strain vector ε and displacements
ue in the element nodes are defined by using strain-displacement approximation in a matrix B

ε = Bue where B =
∂

∂x
Ne . (22)
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In Eq. (22), Ne is a shape function matrix defining the displacement approximations inside the
element. If the element is undergoing a virtual displacement δue, we can write using Eq. (21)
(see e.g. [54]):

δW = δue

∫
V

BT σ̄ dV . (23)

However, the stress σ̄ inside the volume is calculated using the stress strain behaviour of the
viscoelastic in-plane moving continuum model. One-dimensional non-linear equation (10) will
be solved using the finite element method.

While the velocity U is a function of x, the terms in Eq. (10) may be regrouped as follows:

∂

∂x

[
ηU

∂2u

∂x2
+ (E − ρU2)

∂u

∂x

]
+ ρU

∂U

∂x

∂u

∂x
− η∂U

∂x

∂2u

∂x2
= 0 . (24)

We denote

σ̄ = ηU
∂2u

∂x2
+ (E − ρU2)

∂u

∂x
. (25)

Using the finite element method approximation presented in Eq. (22), the displacement
operators in Eq. (25) can be written as

σ̄ =
[
ηUB2 + (E − ρU2)B1

]
ue , (26)

where

B1 =
∂

∂x
N and B2 =

∂2

∂x2
N. (27)

On the other hand, σ̄ can be expressed with the help of strains (see Eq. (11))

σ̄ =
[
ηUB1 + (E − ρU2)N

]
εe , (28)

where εe are the strains in the element nodes.
The substitution of Eq. (28) to Eq. (23) will result in

δW = δue

[∫
V

BT
[
ηUB1 + (E − ρU2)N

]
dV

]
εe . (29)

However, inside the element area the virtual energy δW = δueFe, where Fe is the force
vector, affecting on the element. The forces affecting the element can be represented as

Fe = Keεe ,

where Ke is the following element stiffness matrix:

Ke = A
∫ `e

0

[
BTηUB1 + BT (E − ρU2)N

]
dx . (30)

The element used in the analysis is a 3-node quadratic rod element with three axial degrees
of freedom. See Figure 3.
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Figure 3: Quadratic 3-node rod element and its corresponding shape functions.

The final global finite element equation is

F = Ku . (31)

Vector u includes the displacements based on the boundary conditions presented in the Section
4. Boundary conditions for the axial system of Figure 1 are

ux=0 = 0 and ux=` = εT` =
(
U2

U1

− 1
)
` . (32)

The solution of Eq. (31) is now realized by substituting the displacements of Eq. (32) to
appropriate places in the displacement vector u. The corresponding forces are calculated to
force vector F by using elimination. Finally, the rest unsolved displacements are computed
using u = K−1F . The non-linear term in Eq. (24) is handled as a body force applied to the
element nodes. By this, the effect of the non-linear term can be solved as a non-linear force

FBe =
∫

V
NTFnl dV . (33)

The force Fnl originating from the non-linear term, will be calculated for each element:

Fnl = ρU
∂U

∂x
ε− η∂U

∂x

∂ε

∂x
. (34)

The final nodal forces FBe for each element are individual and take into account the current
displacement, velocity and velocity gradient inside of each element. The problem with these
body forces is solved via the Newton–Raphson method.

Using Eqs. (16), (18), and (19), the strain and stress states of the one-dimensional viscoelas-
tic beam can be calculated.We have used parameter values E = 2.5 · 107 N/m2, η = 4.0 · 105

Ns/m2, U = 10 m/s, span length ` = 1.0 m and strain εT = 0.03. The cross-directional area,
which is under draw, is A = 2.0 m2, and the web density is 0.16 kg/m3.

For the exemplary parameter values above, the results obtained are shown in the Figures 4
– 7. The analytical solution (with a constant velocity U ) is obtained from Eq. (12), and the
FEM solutions from the discretized form of Eq. (10) with velocity depending on x. For the first
Newton–Raphson iteration, the U was set constant, but U was updated during the iteration with
the help of nodal strains. The number of nodal points used in the FEM was 600.

The strain distribution during the draw differs from the constant-strain presented in theory
of elasticity [49]. See Figure 4. In this figure, one may also notice a slight difference between
the analytical solution with constant U and the numerical iterated solution where the velocity U
depends on x. However, the FEM solution from the first iteration (having constant U ) and the
analytical solution coincided as desired.
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Figure 4: Analytical and numerical (FEM) solution of strain distribution during the length of the span.
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Figure 5: Analytical (left) and numerical (FEM) (right) solution of the stress distribution during the length of the
span.
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Figure 6: Effect of the span length to the web stress with different web speed levels.
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Figure 7: Strain distribution in the span and the effect of non-linearity. The strain at the end of the span is εT = 0.1.
On the right-hand side, the Newton–Raphson iteration is shown for some values of x.
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Even though the strain distribution is not constant, the stress distribution is a combination of
elastic and viscous forces based on Eq. (6) and it is almost constant. See Figure 5 and compare
with the analytical solution in Eq. (20). The stress increases very slightly towards the traction
line A2.

The effect of the span length on the web stress state is visible in Figure 6. As seen, the shorter
the processing time of the viscoelastic span, the higher the response of the time-dependent
viscous force component. The effect of non-linearity is seen in Figure 7. However, the effect of
non-linearity is relatively small.

In Table 1, numerical data in the case εT = 0.1 is shown for some numbers of iterations. The
value of the strain ε is collected for x = 0.25 m, 0.50 m, and 0.75 m (when the length of the
span is ` = 1 m). Also here, it is seen that the first iteration with constant velocity gives results
that coincide with the analytical solution. This shows the accuracy of the FEM solution. When
U is not constant, the strains seems to be slightly smaller than in the case when U is constant.
See also Figure 7.

Table 1: Numerical data from the Newton–Raphson iteration. The value of the strain ε for some selected values
of x and numbers of iterations (Iter.). At the first row, the analytical solution for the case of constant velocity is
shown. The strain at the end of the span is εT = 0.1. Compare with Figure 7.

Iter. x (m)
0.25 0.50 0.75

Anal. 7.9082·10−2 9.5768·10−2 9.9266·10−2

1 7.9081·10−2 9.5768·10−2 9.9266·10−2

4 7.7957·10−2 9.5119·10−2 9.9076·10−2

16 7.7683·10−2 9.4955·10−2 9.9026·10−2

64 7.7615·10−2 9.4914·10−2 9.9014·10−2

6 Conclusions

In this paper, we presented models for handling of continuous, high-speed webs. We also
took into consideration the type of the web material, which has a significant effect on both
qualitative and quantitative characteristics of the in-plane stresses.

In this study, the effects of the material viscoelasticity and the Eulerian non-linearity were
considered as a function of the transport velocity. Solutions of the one-dimensional non-linear
equation were presented both with elastic and viscoelastic material assumptions. Finite element
method (FEM) was used in the solution of the group of the second order PDEs.

Despite the limitations of the Kelvin-Voigt material assumption, fundamental coupling ef-
fects between viscoelasticity and the velocity field were visible. From the numerical solutions,
the effect of the strain behavior in the span under study was seen: the web strain is not con-
stant during the span length. In the case of pure elastic web material, the non-linear Euler term
seemed to cause a qualitatively similar effect. The strain being non-constant originates from the
velocity difference and the longitudinal strain wave velocity in the elastic material.

One fundamental observation on the significance of the strain-based boundary conditions
was made. In the case of an one-dimensional model, the strain (Dirichlet) boundary condition
affects throughout the web thickness isolating the span under observation from the (possibly)
preceeding or succeeding web spans. Based on the Figure 1, this, however, is not the situation
in reality. Even if the web was considered as slender, there would always be a possibility of the
time-dependent strain waves advancing through the control areas A1 and A2. Therefore, one

12



Matti J. Kurki, Juha M. Jeronen, Tytti J. Saksa, and Tero T. Tuovinen

of the future challenges in developing realistic in-plane moving web models are the boundary
conditions applied.
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